This post is part of a larger document called "Acupuncture for Pain Management, Opioid Dependence, and Mental Health." For the whole document, please visit this site.
submitted by the Oregon Acupuncture Association (OAA) to the Oregon Pain Management Commission of the Oregon Health AuthorityJanuary 2024
written by Kelly Ilseman, LAc/OAA Research Committee Chair, with support from Kailashi Zigler, LAc/OAA Research Committee Member; peer-reviewed by Laura Ocker, LAc/former OAA President, Ryan Milley, LAc/former SAR member, and Jennifer Briggs, LAc/OAA Vice President
Mechanisms of Acupuncture
Connective Tissue
Ultrasound visualizations show collagen connective tissues winding and pulling around acupuncture needles upon insertion into tissue, stimulating matrix deformation, microstructural cellular changes, and mechanotransduction. 70-84,100
Biochemical, Bioelectrical, and Molecular
Mechanical connective tissue forces trigger downstream physiological cascades involving biochemical, bioelectrical, and molecular expression pathways that produce tangible physiological effects: 70-104
Nociceptive/analgesic, pain-relieving actions 70,85,88,90,94-96
Anti-inflammatory actions 85,87-92,95,96,99
Antioxidant effects 87,88,92,93,99
Autonomic vagus nerve regulation 86,89,92,94,99
Increased endogenous opioids 86,88,90,93,95,96
Action on cannabinoid CB2 receptors 88,96
Neuromodulation via neurotransmitter actions 72,86,88,90,93,95,96
Neuroendocrine actions 86,88,90,93,95,96
Neuroimmune regulation via mast cell activation 70,88,92,97,99
Neuroplastic brain changes visible on MRI/fMRI 100,101,102,103
Neural growth and /regeneration/apoptosis reduction 87,88,90
Whole-brain impacts via the default mode network 92,102,104,105
Microbiome changes 88,92,106 (which affect mood and pain perception) 88,104
Microcirculatory changes 87
3. Experience of Pain
The changes that occur within the brain and body affect the psychological interpretation and experience of pain. 88,96,104
References
70. Liddle CE, Harris RE. Cellular reorganization plays a vital role. Med Acupunct. 2018;30(1). doi:10.1089/acu.2017.1258 in Acupuncture Analgesia
71. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767–774.
72. Langevin HM, Churchill DL, Cipolla MJ. Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB. 2001;15:2275-2282.
73. Langevin HM, Schnyer RN. Reconnecting the body in eastern and western medicine. J Altern Complement Med. 2017;23(4):238-241. doi: 10.1089/acm.2017.0028
74. Langevin H, Bouffard NA, Churchill DL, Badger GJ. Connective tissue fibroblast response to acupuncture: dose-dependent effect of bidirectional needle rotation. JACM. 2007;13(3):355–360. doi: 10.1089/acm.2007.6351
75. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767–774.
76. Langevin HM, Konofagou EE, Badger GJ, Churchill DL, Fox JR, Ophir J, Garra BS. Tissue displacement during acupuncture using ultrasound elastography techniques. Ultrasound Med Biol. 2004;30(9):1173–1183. doi:10.1016/j.ultrasmedbio.2004.07.010
77. Langevin HM, Churchill DL, Wu J, Badger GJ, Yandow JA, Foxá JR, Kragá MH. Evidence of connective tissue involvement in acupuncture. FASEBJ. 2002. doi:10.1096/fj.01-0925fje. Published online April 10, 2002.
78. Langevin, HM, Bouffard NA, Churchill DL, Badger GJ. Connective tissue fibroblast response to acupuncture: dose-dependent effect of bidirectional needle rotation. J Altern Complement Med. 2007;13:355-360.
79. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767-774.
80. Langevin HM, Konofagou EE, Badger GJ, Churchill DL, Fox JR, Ophir J, Garra BS. Tissue displacement during acupuncture using ultrasound elastography techniques. Ultrasound Med Biol. 2004;30(9):1173-1183. doi:10.1016/j.ultrasmedbio.2004.07.010
81. Langevin HM, Churchill DL, Junru W, Badger GJ, Yandow JA, Fox JR, Krag MH. Evidence of connective tissue involvement in acupuncture. FASEB J. 2002.
82. Schleip R, Zorn A, Klingler W. Biomechanical properties of fascial tissues and their role as pain generators. J Musculoskelet Pain. 2010;18(4). doi: 10.3109/10582452.2010.502628
83. Bai Y, Wang J, Wu J, Dai J, Sha O, Yew DTW, Yuan L, Liang Q. Review of evidence suggesting that the fascia network could be the anatomical basis for acupoints and meridians in the human body. Evid Based Complement Altern Med. 2011;2011:260510. doi:10.1155/2011/260510
84. Ahn AC, Wu J, Badger GJ, Hammerschlag R, Langevin HM. Electrical impedance along connective tissue planes associated with acupuncture meridians. BMC Complement Altern Med. 2005;5:10. doi:10.1186/1472-6882-5-124.
85. Sheng-xing MA. Biophysical and biochemical studies of low electrical resistance properties of acupuncture points: roles of NOergic signaling molecules and neuropeptides in skin electrical conductance. Chin J Integr Med. 2021; 27(8): 563–569. doi:10.1007/s11655-021-3318-5.
86. Qin E-Q, Liang F-R, Li Y, et al. [Research progress of neuroendocrine mechanism of acupuncture for dyspnea]. Zhen Ci Yan Jiu. 2022; 47(6):559-64. doi: 10.13702/j.1000-0607.20210430
87. Jiang K, Sun Y, Chen X. Mechanism underlying acupuncture therapy in spinal cord injury: a narrative overview of preclinical studies. Front Pharmacol. 2022;13. doi: 10.3389/fphar.2022.875103
88. Zhang B, Shi H, Cao S, Xie L, Ren P, Wang J, Shi B. Revealing the magic of acupuncture based on biological mechanisms: a literature review. BioSci Trends. 2022; 16(1):73-90. doi: 10.5582/bst.2022.01039
89. Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature. 2021; 598(7882): 641–645. doi:10.1038/s41586-021-04001-4.
90. Chen W, Zhang WW, Chu Y-X, Wang Y-Q. Acupuncture for pain management: molecular mechanisms of action. Am J Chin Med. 2020; 48(4):793–811. doi: 10.1142/S0192415X20500408
91. Wang F, Cui G-w, Kuai L, Xu J-m, Zhang T-t, Cheng H-j, Dong H-s, Dong G-r. Role of acupoint area collagen fibers in anti-inflammation of acupuncture lifting and thrusting manipulation. ECAM. 2017. doi:10.1155/2017/2813437
92. Song G, Fiocchi C, Achkar J-P. Acupuncture in inflammatory bowel disease. Inflamm Bowel Dis. 2019; 25(7):1129-1139.
93. Li Y-H, Ma Q-L, Hu B, Wang Z-L. [Current state about research on selection of experimental index mechanisms of acupuncture underlying improvement of chronic fatigue syndrome]. Zhen Ci Yan Jiu. 2021;46(11):980-4. doi: 10.13702/j.1000-0607.200998
94. Neves ML, Karvat J, Simoes RR, et al. The antinociceptive effect of manual acupuncture in the auricular branch of the vagus nerve in visceral and somatic acute pain models and its laterality dependence. Life Sci. 2022;309. doi: 10.1016/j.lfs.2022.121000
95. Zhang R, Lao L, Ren K, Berman BM. Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology. 2014;120(2): 482–503. doi:10.1097/ALN.0000000000000101
96. Leung L. Neurophysiological basis of acupuncture-induced analgesia – an updated review. J Acupunct Meridian Stud. 2012;5(6):261-270.
97. Li YM. Song’s mast cell theory of acupuncture. Med Acupunct. 2022;34(5):316-324. doi: 10.1089/acu.2022.0035
98. Li Y, Yu Y, Liu Y, Yao W. Mast cells and acupuncture analgesia. Cells. 2022;11:860. doi:10.3390/cells11050860
99. Li N, Guo Y, Gong Y, et al. The anti-inflammatory actions and mechanisms of acupuncture from acupoint to target organs via neuro-immune regulation. J Inflamm Res. 2021;14: 7191–7224.
100. Bianco G. Fascial neuromodulation: an emerging concept linking acupuncture, fasciology, osteopathy and neuroscience. Eur J Transl Myol. 2019;29(3):195-201.
101. Li B, Deng S, Sang B, et. al. Revealing the neuroimaging mechanism of acupuncture for poststroke aphasia: a systematic review. Neural Plast. 2022; Article ID 5635596: 23 pages. doi: 10.1155/2022/5635596
102. Zhang J, Lu C, Wu X, Nie D, Yu H. Neuroplasticity of acupuncture for stroke: an evidence-based review of MRI. Neural Plast. 2021;Article ID 2662585: 14 pages. doi: 10.1155/2021/2662585
103. Maeda Y, Kim H, Kettner N, et al. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain: A Journal of Neurology. 2017;140: 914–927. doi:10.1093/brain/awx015
104. Zhang Y, Zhang H, Nierhaus T, Pach D, Witt CM and Yi M. Default mode network as a neural substrate of acupuncture: evidence, challenges and strategy. Front Neurosci. 2019;13:100. doi: 10.3389/fnins.2019.00100
Comments