top of page
kellyilseman

Mechanisms of Acupuncture

This post is part of a larger document called "Acupuncture for Pain Management, Opioid Dependence, and Mental Health." For the whole document, please visit this site.


submitted by the Oregon Acupuncture Association (OAA) to the Oregon Pain Management Commission of the Oregon Health AuthorityJanuary 2024 


written by Kelly Ilseman, LAc/OAA Research Committee Chair, with support from Kailashi Zigler, LAc/OAA Research Committee Member; peer-reviewed by Laura Ocker, LAc/former OAA President, Ryan Milley, LAc/former SAR member, and Jennifer Briggs, LAc/OAA Vice President



Mechanisms of Acupuncture 

  1. Connective Tissue 

  • Ultrasound visualizations show collagen connective tissues winding and pulling around acupuncture needles upon insertion into tissue, stimulating matrix deformation, microstructural cellular changes, and mechanotransduction. 70-84,100

  1. Biochemical, Bioelectrical, and Molecular

  • Mechanical connective tissue forces trigger downstream physiological cascades involving biochemical, bioelectrical, and molecular expression pathways that produce tangible physiological effects: 70-104

  • Nociceptive/analgesic, pain-relieving actions  70,85,88,90,94-96

  • Anti-inflammatory actions 85,87-92,95,96,99 

  • Antioxidant effects 87,88,92,93,99

  • Autonomic vagus nerve regulation 86,89,92,94,99

  • Increased endogenous opioids 86,88,90,93,95,96 

  • Action on cannabinoid CB2 receptors 88,96 

  • Neuromodulation via neurotransmitter actions 72,86,88,90,93,95,96 

  • Neuroendocrine actions 86,88,90,93,95,96

  • Neuroimmune regulation via mast cell activation 70,88,92,97,99

  • Neuroplastic brain changes visible on MRI/fMRI 100,101,102,103

  • Neural growth and /regeneration/apoptosis reduction 87,88,90

  • Whole-brain impacts via the default mode network 92,102,104,105

  • Microbiome changes 88,92,106 (which affect mood and pain perception) 88,104

  • Microcirculatory changes 87

      3. Experience of Pain

  • The changes that occur within the brain and body affect the psychological interpretation and experience of pain. 88,96,104 



References

70. Liddle CE, Harris RE. Cellular reorganization plays a vital role. Med Acupunct. 2018;30(1). doi:10.1089/acu.2017.1258 in Acupuncture Analgesia 

71. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767–774.

72. Langevin HM, Churchill DL, Cipolla MJ. Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB. 2001;15:2275-2282.

73. Langevin HM, Schnyer RN. Reconnecting the body in eastern and western medicine. J Altern Complement Med. 2017;23(4):238-241. doi: 10.1089/acm.2017.0028

74. Langevin H, Bouffard NA, Churchill DL, Badger GJ. Connective tissue fibroblast response to acupuncture: dose-dependent effect of bidirectional needle rotation. JACM. 2007;13(3):355–360. doi: 10.1089/acm.2007.6351 

75. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767–774.

76. Langevin HM, Konofagou EE, Badger GJ, Churchill DL, Fox JR, Ophir J, Garra BS. Tissue displacement during acupuncture using ultrasound elastography techniques. Ultrasound Med Biol. 2004;30(9):1173–1183. doi:10.1016/j.ultrasmedbio.2004.07.010 

77. Langevin HM, Churchill DL, Wu J, Badger GJ, Yandow JA, Foxá JR, Kragá MH. Evidence of connective tissue involvement in acupuncture. FASEBJ. 2002. doi:10.1096/fj.01-0925fje. Published online April 10, 2002. 

78. Langevin, HM, Bouffard NA, Churchill DL, Badger GJ. Connective tissue fibroblast response to acupuncture: dose-dependent effect of bidirectional needle rotation. J Altern Complement Med. 2007;13:355-360. 

79. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol. 2006;207:767-774.

80. Langevin HM, Konofagou EE, Badger GJ, Churchill DL, Fox JR, Ophir J, Garra BS. Tissue displacement during acupuncture using ultrasound elastography techniques. Ultrasound Med Biol. 2004;30(9):1173-1183. doi:10.1016/j.ultrasmedbio.2004.07.010 

81. Langevin HM, Churchill DL, Junru W, Badger GJ, Yandow JA, Fox JR, Krag MH. Evidence of connective tissue involvement in acupuncture. FASEB J. 2002. 

82. Schleip R, Zorn A, Klingler W. Biomechanical properties of fascial tissues and their role as pain generators. J Musculoskelet Pain. 2010;18(4). doi: 10.3109/10582452.2010.502628

83. Bai Y, Wang J, Wu J, Dai J, Sha O, Yew DTW, Yuan L, Liang Q. Review of evidence suggesting that the fascia network could be the anatomical basis for acupoints and meridians in the human body. Evid Based Complement Altern Med. 2011;2011:260510. doi:10.1155/2011/260510 

84. Ahn AC, Wu J, Badger GJ, Hammerschlag R, Langevin HM. Electrical impedance along connective tissue planes associated with acupuncture meridians. BMC Complement Altern Med. 2005;5:10. doi:10.1186/1472-6882-5-124. 

85. Sheng-xing MA. Biophysical and biochemical studies of low electrical resistance properties of acupuncture points: roles of NOergic signaling molecules and neuropeptides in skin electrical conductance. Chin J Integr Med. 2021; 27(8): 563–569. doi:10.1007/s11655-021-3318-5.

86. Qin E-Q, Liang F-R, Li Y, et al. [Research progress of neuroendocrine mechanism of acupuncture for dyspnea]. Zhen Ci Yan Jiu. 2022; 47(6):559-64. doi: 10.13702/j.1000-0607.20210430

87. Jiang K, Sun Y, Chen X. Mechanism underlying acupuncture therapy in spinal cord injury: a narrative overview of preclinical studies. Front Pharmacol. 2022;13. doi: 10.3389/fphar.2022.875103 

88. Zhang B, Shi H, Cao S, Xie L, Ren P, Wang J, Shi B. Revealing the magic of acupuncture based on biological mechanisms: a literature review. BioSci Trends. 2022; 16(1):73-90. doi: 10.5582/bst.2022.01039 

89. Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature. 2021; 598(7882): 641–645. doi:10.1038/s41586-021-04001-4.

90. Chen W, Zhang WW, Chu Y-X, Wang Y-Q. Acupuncture for pain management: molecular mechanisms of action. Am J Chin Med. 2020; 48(4):793–811. doi: 10.1142/S0192415X20500408 

91. Wang F, Cui G-w, Kuai L, Xu J-m, Zhang T-t, Cheng H-j, Dong H-s, Dong G-r. Role of acupoint area collagen fibers in anti-inflammation of acupuncture lifting and thrusting manipulation. ECAM. 2017. doi:10.1155/2017/2813437 

92. Song G, Fiocchi C, Achkar J-P. Acupuncture in inflammatory bowel disease. Inflamm Bowel Dis. 2019; 25(7):1129-1139. 

93. Li Y-H, Ma Q-L, Hu B, Wang Z-L. [Current state about research on selection of experimental index mechanisms of acupuncture underlying improvement of chronic fatigue syndrome]. Zhen Ci Yan Jiu. 2021;46(11):980-4. doi: 10.13702/j.1000-0607.200998 

94. Neves ML, Karvat J, Simoes RR, et al. The antinociceptive effect of manual acupuncture in the auricular branch of the vagus nerve in visceral and somatic acute pain models and its laterality dependence. Life Sci. 2022;309. doi: 10.1016/j.lfs.2022.121000

95. Zhang R, Lao L, Ren K, Berman BM. Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology. 2014;120(2): 482–503. doi:10.1097/ALN.0000000000000101

96. Leung L. Neurophysiological basis of acupuncture-induced analgesia – an updated review. J Acupunct Meridian Stud. 2012;5(6):261-270. 

97. Li YM. Song’s mast cell theory of acupuncture. Med Acupunct. 2022;34(5):316-324. doi: 10.1089/acu.2022.0035 

98. Li Y, Yu Y, Liu Y, Yao W. Mast cells and acupuncture analgesia. Cells. 2022;11:860. doi:10.3390/cells11050860 

99. Li N, Guo Y, Gong Y, et al. The anti-inflammatory actions and mechanisms of acupuncture from acupoint to target organs via neuro-immune regulation. J Inflamm Res. 2021;14: 7191–7224. 

100. Bianco G. Fascial neuromodulation: an emerging concept linking acupuncture, fasciology, osteopathy and neuroscience. Eur J Transl Myol. 2019;29(3):195-201.

101. Li B, Deng S, Sang B, et. al. Revealing the neuroimaging mechanism of acupuncture for poststroke aphasia: a systematic review. Neural Plast. 2022; Article ID 5635596: 23 pages. doi: 10.1155/2022/5635596 

102. Zhang J, Lu C, Wu X, Nie D, Yu H. Neuroplasticity of acupuncture for stroke: an evidence-based review of MRI. Neural Plast. 2021;Article ID 2662585: 14 pages. doi: 10.1155/2021/2662585

103. Maeda Y, Kim H, Kettner N, et al. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain: A Journal of Neurology. 2017;140: 914–927. doi:10.1093/brain/awx015 

104. Zhang Y, Zhang H, Nierhaus T, Pach D, Witt CM and Yi M. Default mode network as a neural substrate of acupuncture: evidence, challenges and strategy. Front Neurosci. 2019;13:100. doi: 10.3389/fnins.2019.00100 


5 views0 comments

Comments


bottom of page